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Detector-blinding attack  Makarov 2009, Lydersen 2010

Receiver laser damage attack  Bugge 2014, Makarov 2016

Time-shift attack  Qi 2007, Zhao 2008

Wavelength attack  Huang 2013, Li 2011

Back-flash attack  Kurtsiefer 2001

Channel calibration  Jain 2011

Detector deadtime  Weier 2011

Spatial efficiency mismatch  Rau 2015, Sajeed 2015

Trojan-horse attack Gisin 2006, Jain 2014

Intensity information  Jiang 2012

Modulation pattern effect  Yoshino 2016

Source laser damage attack  Huang 2020

Phase-remapping attack  Fung 2007, Xu 2010

Phase information Sun 2012, 2015, Tang 2013

Hacking Practical QKD
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Lo, H. K., et al. (2014). Nature Photonics, 8(8), 595-604.

Scarani, V., et al. (2009). Reviews of modern physics, 81(3), 1301.

Solution

Measurement-device-independent 

MDI-QKD

Target: Receiver

Target: Source



Trojan-Horse Attack

3
[1] Gisin, N., et al. (2006). Physical Review A, 73(2), 022320.

[2] Sajeed, S., et al. (2015). Physical Review A, 91(3), 032326.
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Current countermeasures 

• Phase randomize (Reduce 𝐼𝑒𝑣𝑒
1) 

• Watchdog detector (Can be bypassed2) 

• Passive components such as isolators 

(Limited degree-of-freedom, one-way 

application only, high isolation)

Basic idea is to limit the amount 

of unauthorized input power.

Jain, N., et al. (2014). New Journal of Physics, 16(12), 123030.



• Bound on the mean energy is one way to 

provide a practical Semi-Device-

Independent (Semi-DI) framework.

• Use energy bound to bound the overlap 

between the prepared states.

• Energy bound could lead to certifiable 

quantum randomness.

Semi-DI with Energy Bound
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Avesani, M., et al. (2020). arXiv:2004.08344v1.

Van Himbeeck, T., et al. (2017). Quantum, 1, 33.
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Van Himbeeck, T., et al. (2019). arXiv:1905.09117.

Rusca, D., et al. (2019). Physical Review A, 100(6), 062338..

Again, a power limiting 

device is important here!



❑ Provides a reliable and characterizable power limiting threshold (in 

the order of a few photons to hundreds of photons).

❑ If the input energy exceeds the threshold, the device will stop the 

communication channel.

❑ Cost-effective, passive, and easily replaceable.

❑ Power limiting effects are independent of other degree of freedoms, 

e.g., frequency, polarization, etc.

Proposal: Quantum Optical Fuse / Power limiter
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The device should ideally have the following properties:

It is timely to develop such devices, for we now have a wide range of security proof 

methods with possible energy constraints features: 

Lucamarini et al 2015, Tamaki et al 2016, Van Himbeeck et al 2019, Pereria et al 2019, 

Primaatmaja et al 2019, Navarrete et al 2020, just to name a few.



Review of Optical Power Limiter
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Dini, D., et al. (2016). Chemical reviews, 116(22), 13043-13233.

Yan, S., et al. (2014). Scientific reports, 4, 6676.

Fiber damage

• 102 – 103 mW level

Nonlinear effect

• 10 – 102 mW level

Filter based

• Using thermo-optic effect or 

optical force to tune the filter 

center wavelength

• Narrow operation bandwidth, 

limited extinction ratio

• 10 – 102 mW level

Thermo-optical defocusing 

Sang, X., et al. (2009). Journal of optoelectronics and advanced materials, 11(1), 15. 

Martincek, I., et al. (2011). IEEE Photonics Technology Letters, 24(4), 297-299.

Two-photon absorption

• 10 – 103 mW level



7Patent filed: SG Non-Provisional Application No.10202006635S

Our Choice: Thermo-Optical Defocusing
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• Negative thermo-optic coefficient of acrylic:  
𝑑𝑛

𝑑𝑇
= −1.3 × 10−4 𝐾−1

• Higher absorbed power diverges the input light more 

• A tunable diaphragm controls the received power

• Robust and stable performance, compact and cost-effective design
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Theoretical Modeling
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• Angular divergence of a paraxial light ray 

passing through a refractive index gradient

𝛼𝐼 = −
𝑘

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑇

𝜕𝑟

• Absorbed laser power I is balanced with the 

heat transfer mechanism (Assume heat 

transfer in r-direction only)

𝐼 𝑟, 𝑧 = 𝐼 𝑟, 0 ∙ exp −𝛼𝑧 +

𝜕𝑛
𝜕𝑇

𝑃𝑒
−
𝑟2

𝑎2 𝑧 −
1
𝛼

1 − 𝑒−𝛼𝑧

𝜋𝑘𝑛𝑎2

• Laser intensity at position (r, z)
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beam shape
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Input-Output Power Relationship
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Shorter pulse          Higher output power  ?

Response Time Consideration
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• Assume 20 mW average input 

power (Based on prior experiment)

• Pulsed input experiences greater 

power-limiting effect comparing to 

the continuous-wave cases

Pulsed Response Simulation
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13Zhang, Z., et al. (2006). Polymer, 47(14), 4893-4896.

Beadie, G., et al. (2015). Applied optics, 54(31), F139-F143. 

Thermo-optic coefficient

𝑇𝑂𝐶 =
𝑑𝑛

𝑑𝑇
=

𝑛2 − 1 𝑛2 + 2

6𝑛
(Φ − 𝛽)

• Electronic polarizability Φ > 0 typically

• Volumetric expansion 𝛽 is dominant in 

polymer
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• Silicon absorber limit visible light
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Laser Damage Attack
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Berrie, P. G., et al (1980). Optics and Lasers in Engineering, 1(2), 107-129.

M Taha, R. (2014). Diyala Journal of Engineering Sciences, 7(1), 30-39.
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• Material could be melted and 

evaporated under strong laser beam. 

As a result of the evaporation and 

assist gas pressure, the material is 

thrown out of the hole.

• A reflection structure could be 

implemented to permanently fuse the 

optical path.



Laser Damage Attack
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• Plug-and-play phase-encoding 

measurement-device-independent (MDI) 

QKD

• Robust performance with simple 

setup.

• Common laser source for all users, 

enables identical central 

wavelength and accurate clock 

synchronization. 

• Automatically compensate for any 

birefringence effects and

polarization-dependent losses in 

optical fibers.

• The average Trojan photon number 𝜈
could provide Eve with information about 

the encoded phase

Application: Plug-and-Play MDI-QKD

16Xu, F. (2015). Physical Review A, 92(1), 012333.
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Lucamarini, M., et al. (2015). Physical Review X, 5(3), 031030.

Tamaki, K., et al. (2016). New Journal of Physics, 18(6), 065008.

Patent filed: SG Non-Provisional Application No.10202006635S



Secret Key Rate against THA
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Consider a repetition rate of 1 

GHz, the Trojan-horse photon 

power is about 1.28 x 10-10 mW

• Assume average Trojan photon leakage 𝜈 from coherent state (CW and Pulse).

• Proof technique taken here:  

Primaatmaja, I. W., et al. (2019). Physical Review A, 99(6), 062332.

Parameters Value

Detector efficiency 70%

Dark count rate 10−7

Misalignment error 2%

Fiber loss 0.2 dB/km



❑ To do: Security analysis of MDIQKD with untrusted light source

❑ To do: Measurement with visible wavelength and high-power laser

Conclusions and Outlooks
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✓ Passive power limiter at mW level. 

Using additional attenuation for few-

photon level limitation.

✓ If the input energy exceeds the 

threshold, the output power will be 

limited, and start decrease.

✓ Cost-effective, passive, and easily 

replaceable.

✓ Power limiting effects for both CW 

and pulsed light, wavelength and 

polarization independent.

❑ Provides a reliable and characterizable 

power limiting threshold (in the order of 

a few photons to hundreds for photons).

❑ If the input energy exceeds the 

threshold, the device will stop the 

communication channel.

❑ Cost-effective, passive, and easily 

replaceable.

❑ Power limiting effects are independent 

of other degree of freedoms, e.g., 

frequency, polarization, etc.

Ideal model Our scheme
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