
Acknowledgments
This work was financially supported by Russian Ministry of Education (Grant No. 2020-0903).

Complete Bell state analyser for photonic qubits using semi-
demolition or entangled non-demolition measurements

A Kozubov1, A Gaidash1, G Miroshnichenko1,
1ITMO University, Saint-Petersburg 197101, Russia

References
 G. Miroshnichenko, “Discrete photodetection for protocols of linear optical quantum calculations and 
communications,” J. Exp. Theor. Phys.112, 923–931 (2011)

Bell state analyser with entangled non-demolition measurement

FIG.1. Principle scheme for Bell state measurement with filtration operation based on 
entangled non-demolition measurement. With grey and white colours polarization and 
50:50 beam splitters are denoted respectively.

FIG. 2. Principle scheme for Bell state measurement with filtration operation based on 
semi-demolition measurement. With grey and white colours polarization and 50:50 beam 
splitters are denoted respectively. 

In this paper we present for the first time two possible techniques for deterministic two-step complete Bell state analyzer of optical (polarization) qubits using semi-
demolition or entangled non-demolition measurements. Main difference to a prior studies in the field is that we do not use hyperentanglement or representation of the 
Bell states as concatenated Greenber–Horne–Zeilinger (C-GHZ) state to provide the discrimination. We demonstrate two different approaches for complete Bell state 
measurement based on different types of filtration. In entangled non-demolition measurement we allocate two pairs of the states from each other as the filtration process. 
The approach can be based on the utilization of cubic (Kerr) nonlinearity and auxiliary mode.  In semi-demolition measurement two states are unambiguously 
discriminated and hence destroyed; however two other states passes the filter without modification. The measurement destroys the single photon subspace in every mode 
and preserves the superposition of zero and two photons.  It can be realized with discrete photodetection based on microresonator with atoms. Such filtration can be 
considered as quadratic nonlinearity just as any measurement. The most significant about this approach is that we do not transform the initial states using any type of 
filtration based on different nonlinearities. 

Abstract

Bell state analyser with semi-demolition measurement

 States that one needs to distinguish can be described as:
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where  and  are the creation operators for horizontal and vertical modes 
of the first and the second spatial modes respectively,  is the vacuum state.  We 
rewrite our initial states in spatial mode notation. Further we express creation operators, 
basis vectors, and considered Bell states respectively according to the described 
transformation as follows:
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 It is obvious that pair  is unambiguously distinguishable from pair 
. Nevertheless there is no distinguishability between the states inside the 

pairs. Let us introduce the filtering operation that discriminates between described pairs. 
Filtering is performed using operators that have filtered states as their eigenvectors with 
an eigenvalue that equals to one. Filtration operations can be performed by QND 
measurements using cross-Kerr nonlinearity. QND measurement in each mode separately 
it will destroy the entanglement and thus one cannot discriminate between states inside 
the pair. In order to avoid entanglement destruction we propose the next filtering: 

{ |B1⟩, |B2⟩}
{ |B3⟩, |B4⟩}

 The result of non-demolition measurements is recorded as the total phase of coherent 
state  stored in auxiliary mode. As a result of the Kerr interaction, the coherent state 
is transformed and acquires the total phase:
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|α⟩ → |α exp(i ⋅ Θ)⟩, Θ = Θ1 + Θ2 + Θ3 + Θ4 .
Without loss of generality we may assume that phases related to channels 1 and 3 are 

 and related to channels 2 and 4 are . Thus  
are filtered when  and  when . Indeed the state after filtration 
are as follows:
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Using well-known relations between input and output creation operators for beam 
splitters one can express the states as follows:
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Using the notation introduced in the previous part one can rewrite the Bell states as 
follows:
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where  and  are single- and two-photon states in  spatial mode 
respectively. First two states can be easily distinguished since the distributions of 
single photons over four channels differ.  It can be provided with Kraus operators:
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It is impossible to distinguish between states  and  by the the 
distribution of two-photon states over four channels. However, it is possible to 
construct the Kraus operator  which provides filtering of the states  and 

 without their destruction:
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The Kraus operators are constructed from the set of projective operators in 
each mode:
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where  is corresponding Kraus operator that acts in every channel. Thus the 
Kraus operators for introduced measurement can be described as follows:
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where U is arbitrary unitary operator. Due to this uncertainty one can choose any 
suitable unitary operator. Thus one can provide any possible configuration of the 
states after the implementation of POVM operator. In our case the unitary 
operation can be realized using two 50 : 50 beam splitters connecting channels 1 
and 2, 3 and 4 respectively. The state transformation during the filtration and 
appropriate unitary operation on the first step can be described as:
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