
In this work we consider the Liouville equation that describes the quantum non-unitary dynamics of quantum states in optical fiber. We consider particular case
of thermalization aiming to applications related to various quantum information protocols; however the model can be generalized in various ways taking into
account more features (external pump, nonlinear interactions, continuous spectra, free space propagation, etc.). In order to obtain the appropriate evolution
models for states in the channel we use the SU(1,1) algebra formalism in the Liouville representation. Considered implementation of model takes into account
dichroism, retardance, thermalization, dispersion, decoherence in polarization domain. Described approach allows to connect the information properties of
quantum channels with its physical ones. In order to illustrate this statement we consider BB84 quantum key distribution protocol and investigate behavior of
quantum bit error rate affected by considered physical phenomena in optical fiber. (Paper will be available soon at PhysRev A)
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Introduction
Any quantum state (except equilibrium one) is subject to decoherence due
to its connection with the environment. The latter nonunitary dynamics
may alter information properties of propagating in the optical fiber
quantum optical states in a nontrivial way [1]. Nonunitary dynamics may be
described by Lindblad scheme [2]. The goal of the research is to develop the
model of dissipative dynamics of quantum states and study its relations
with dynamics of quantum information protocols’ characteristics.

Liouville equation
We would like to consider the following Liouville equation that describes
quantum non-unitary dynamics of arbitrary state 𝜌0 for single optical mode
with frequency 𝜔 influenced by thermal light [2]:

𝜕

𝜕𝑡
𝜌 𝑡 = −𝑖 𝐻, 𝜌 𝑡 + Г𝜌 𝑡 ,

𝜌 𝑡 |𝑡=0 = 𝜌0,
where

𝐻 = 𝜔 𝑎†𝑎 +
1

2
,

Г𝜌 = −
𝛾

2
𝑛 + 1 𝑎†𝑎𝜌 + 𝜌𝑎†𝑎 − 2𝑎𝜌𝑎† + 𝑛 𝑎𝑎†𝜌 + 𝜌𝑎𝑎† − 2𝑎†𝜌𝑎 ,

𝑛 =
1

𝑒
ℏ𝜔
𝑘𝑇 − 1

,

where 𝑎† and 𝑎 are creation and annihilation operators, 𝜔 is optical
frequency, 𝛾 is thermalization rate, 𝑛 is mean thermal photon number for
temperature of the environment 𝑇(𝐾) , ℏ is reduced Planck constant, 𝑘 is
Boltzmann constant.
We introduce Liouville notation as follows:

𝐴𝜌 ≡ ശ𝐴𝜌, 𝜌𝐴 = Ԧ𝐴𝜌,
and the following operators:

𝐾+ = 𝑎† Ԧ𝑎, 𝐾− = ശ𝑎𝑎†,

𝐾0 =
1

2
𝑎†𝑎 + 𝑎†𝑎 , 𝑁 = 𝑎†𝑎 − 𝑎†𝑎.

Operators 𝐾+ , 𝐾− , and 𝐾0 form SU(1,1) algebra with the following
properties:

𝐾0, 𝐾± = ±𝐾±, 𝐾−, 𝐾+ = 2𝐾0.
Then one may introduce Liouvillian 𝐿 constructed with the latter operators
as the solution of initial differential equation:

𝜌 𝑡 = 𝑒𝐿𝑡𝜌0 = 𝑒
𝑛

𝑛+1𝐾+𝐴 𝑡 𝑒
−𝑛
𝑛+1𝐾+ ,

𝐴 𝑡 = 𝑒− 𝑛+1 𝐾−𝑒𝐿
(𝑑)𝑡𝑒 𝑛+1 𝐾− ,

𝐿(𝑑) = −𝑖𝜔𝑁 − 𝛾 𝐾0 −
1

2
,

Where 𝐿(𝑑) is diagonalized Liouvillian. Then assuming 𝑛 small we use
Baker–Campbell–Hausdorff expression and obtain the following relation:

𝑒𝐿𝑡 ≈ 𝐴 𝑡 +
𝑛

𝑛 + 1
𝐾+, 𝐴 𝑡 .

The final step is to avoid nonlinear dependence of 𝐴 𝑡 on 𝑛 by introducing
another operator:

𝐵 𝑡 = 𝑒−𝐾−𝑒𝐿
(𝑑)𝑡𝑒𝐾− ,

𝐴 𝑡 = 𝐵 𝑡 − 𝑛 𝐾−, 𝐵 𝑡 .
We present the approximate solution of Liouville equation as follows:

𝜌 𝑡 = 𝐼 + 𝑛 1 − 𝑒−𝛾𝑡 𝐾+ − 2𝐾0 + 𝐾− 𝐵 𝑡 𝜌0,

where 𝐼 is identity operator.

Stokes parameters and quantum bit error rate
Further we consider two-mode problem. Then by multiplying both sides of
equation with appropriate Stokes operator [3] and taking trace one may
derive system of equation for Stokes parameters as follows:

𝜕

𝜕𝑡
𝑆0 𝑡 = −

𝛾𝐻 + 𝛾𝑉
2

𝑆0 −
𝛾𝐻 − 𝛾𝑉

2
𝑆1 + 𝑛 𝛾𝐻 + 𝛾𝑉 ,

𝜕

𝜕𝑡
𝑆1 𝑡 = −

𝛾𝐻 − 𝛾𝑉
2

𝑆0 −
𝛾𝐻 + 𝛾𝑉

2
𝑆1 + 𝑛 𝛾𝐻 − 𝛾𝑉 ,

𝜕

𝜕𝑡
𝑆2 𝑡 = −

𝛾𝐻 + 𝛾𝑉
2

𝑆2 −
𝜔𝐻 − 𝜔𝑉

2
𝑆3,

𝜕

𝜕𝑡
𝑆3 𝑡 = −

𝜔𝐻 − 𝜔𝑉

2
𝑆2 −

𝛾𝐻 + 𝛾𝑉
2

𝑆3.

For simplicity we consider only diagonal elements of frequency and
relaxation matrices. Despite this fact dynamics of Stokes parameters for
considered rather simple model takes into account dichroism, polarization
mode dispersion, thermalization, and as the consequence of the latter
decoherence in polarization domain.
Let us consider BB84 quantum key distribution protocol [4] with the
following initial states with respect to some chosen basis (H, V):

𝐻 = 1 𝐻 ⊗ 0 𝑉, 𝐻 = 0 𝐻 ⊗ 1 𝑉,

𝑆 =
𝐻 + 𝑉

2
, 𝐹 =

𝐻 − 𝑉

2
.

Without doubt one may assume that polarization mode dispersion can be
compensated, i.e. 𝜔𝐻 = 𝜔𝑉. Then each of equiprobable states participates
in the emergence of quantum bit error rate as follows:

𝑄𝐻 =

1 −
𝑆1
𝐻(𝑡)

𝑆0
𝐻(𝑡)

2
, 𝑄𝑉 =

1 −
𝑆1
𝑉(𝑡)

𝑆0
𝑉(𝑡)

2
,

𝑄𝑆 =

1 −
𝑆2
𝑆(𝑡)

𝑆0
𝑆(𝑡)

2
+

𝑆1
𝑆(𝑡)

𝑆0
𝑆(𝑡)

2
, 𝑄𝐹 =

1 −
𝑆2
𝐹(𝑡)

𝑆0
𝐹(𝑡)

2
+

𝑆1
𝐹(𝑡)

𝑆0
𝐹(𝑡)

2
,

Where total quantum bit error can be found as follows:

𝑄 =
𝑄𝐻 + 𝑄𝑉 + 𝑄𝑆 + 𝑄𝐹

4
.

In figure below dependence of total quantum bit error 𝑄 on normalized
propagation time

𝑡𝑄 = ln
1

2𝑛

1

max(𝛾𝐻 , 𝛾𝑉)

for
𝛾𝐻

𝛾𝑉
= 0.97, 𝜔𝐻 = 𝜔𝑉, and 𝑛 = 10−13 is shown. As one may notice there

are two main contributions to the shape of considered curve. The first one
is linear slope; it is due to dichroism:

𝑄𝐿𝑆 =
|𝛾𝐻 − 𝛾𝑉|𝑡

4
.

The second one is due to thermalization (and depolarization):

𝑄𝑊𝐷 =
𝑛(1 − 𝑒−𝛾𝑡)

2𝑛 1 − 𝑒−𝛾𝑡 + 𝑒−𝛾𝑡
,

assuming 𝛾 = 𝛾𝐻 = 𝛾𝑉 .
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