Introduction

Measurement device-independent quantum key distribution (MDI QKD) protocols allow
two distant parties, Alice and Bob, to distribute a shared, secret cryptographic key, even in the
presence of an eavesdropper, Eve, who has complete control of their guantum channels and
the measurement devices employed in the protocol [1, 2]. Typically, Alice and Bob prepare a
set of signal states, send them to a central measurement node potentially controlled by Eve,
which then makes an announcement based on a measurement it may or may not have
faithfully executed. The cost of the information-theoretic security in such a setting is that Alice
and Bob need to trust and characterize the optical sources they employ to send signals to the
measurement devices. Thus, a proper understanding of the source features and flaws, and
knowing how to account for them in a security proof is especially valuable for quantifying the
key rates offered by an MDI protocol.

In this work, we answer a seemingly simple question: how do you construct a security
proof for an MDI QKD protocol that employs trusted, yet noisy — i.e. mixed — signal states,
given that Eve may not hold the purification of the mixture? In the case state preparation
noise can be trusted and characterized, but perhaps not reduced, we provide here a simple
analytical and numerical toolbox for calculating an optimal secret key rate. Concentrating on
the qubit signal state case, we find that the mixed states can be interpreted as providing Alice
and Bob with a virtual shield system they can employ to reduce Eve's knowledge of the secret
key. We then introduce a simple semidefinite programming method for optimizing the virtual
twisting operations they can perform on the shield system to yield a higher key rate, along
with an example calculation of fundamentally achievable key rates in the case of random
polarization modulation error.

Background
Loss-tolerant QKD

The loss-tolerant protocol [3] uses basis mismatch statistics to infer phase error rates that
cannot be directly observed in the case state preparation is non-ideal. In the tilted four state

protocol, Alice and Bob each prepare four mixed qubit signal states {pjx} and {aé'y }, that they

will send respectively with probabilities p**and g’* to the central measurement node
controlled by Eve. When Alice and Bob choose (i,j) = (0,0) these are the key generation
states, with (x, y) corresponding to their key bit values. Following the security proof of the loss

tolerant protocol, we require that the sets of states {pﬁ{x} and {aé"y } each form a tetrahedron
on the Bloch sphere, meaning the Bloch vectors cannot all lie in the same plane [3].

In our reframing of the loss-tolerant proof technique, we show how the initial states and
detection probabilities are sufficient to solve for the Gramian matrix of Eve’s system, which
contains all the parameters required for calculation of the key rate formula from the six-state
protocol, even with the inclusion of twisting operations.

Twisting operations

Typically, the security of QKD is analyzed in terms of Alice and Bob's ability to virtually
distill maximally entangled EPR pairs, since measurement of such pairs yields perfectly
correlated keys, and by the monogamy of entanglement, the results cannot be correlated with
anyone else, including Eve. However, it is known that a larger class of states known as
private states [4-7] are fundamentally what is required to produce secret key. Formally, private
states can be constructed from an EPR pair if Alice and Bob take ancillary shield systems
they control, and apply a “twisting” unitary operation between the EPR pair and the shields,
the condition being that this twisting leave unaffected the measurement results that generate
secret key. Since twisting does not change the key, private states can then be understood as
deflecting some of Eve's attack on the systems that generate key to the shield systems. See
Fig. 1 for a diagram of this concepit.

In our technique, we show that the mixing noise of the signal states can be treated in a
virtual picture as being equivalent to Alice and Bob employing shield systems that can be
used to decrease Eve's knowledge of the key. Completely within this virtual picture, we can
apply unitary twisting operations to the shields to decrease the phase errors of the protocol,
Increasing the secret key rate. We provide simple semi-definite programs to find the optimal
twisting operations, yielding the optimal key rate under this framework.
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Fig. 1 — (a) A real MDI QKD protocol: Alice and Bob each prepare mixed states associated with bit (x, y) and basis (i, j) values. They send

their states to a central node controlled by Eve, who makes an announcement Z. (b) A virtual version of the key generation states in the
protocol: in a purified picture, Alice and Bob's mixed signal states are entangled with virtual qubits 4, B which coherently store the bit
values (x,y). Measurement of 4, B in the computational basis yields the raw keys. The A, B systems are additionally purified by the A’, B’
systems to account for trusted noise in the source. Only the A, B systems are sent to Eve. (c) An alternative virtual purification: all
purifications are related by unitary operations applied to, in general, a joint purifying ancilla, yielding private states in ABA'B’. These
“twisting” operations can optimally boost the secret key rate as they can modify the phase error rates which Alice and Bob need to
estimate. In (a)—(c), the signal states sent and the observed protocol statistics (detection and bit error rates) are the same.

Characterizing Eve’s system
Our reframing of the loss-tolerant protocol proof tec@nique can be summarized as:
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Optimal choice of virtual protocol

The key generation states, p®*q%Yp3*o,” can be considered virtually:
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and Bob measure 4, B in the computational basis. This purification is not unique, and so we
have freedom to choose the virtual picture that yields the optimal key rate. Since Eve does
not have access to A'B’ any purification will yield a suitable lower bound on the key rate.

We can parametrize all purifications using twisting unitary operations [4-7] applied to the

virtual ancillary systems in |{): |
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Such an operation is entirely virtual, so it can be nonlocal in general and never needs to be
executed in the real protocol.

To quantify the security, we employ the key rate formula from the six-state protocol [8-10]:
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We find that the linear combinations e, = ey + ey, are linear functions with respect to the

elements of Eve's Gramian matrix (e, ,\emn) , which are already known, as well as with
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ancillary system states. Since our task is to modify the twisting operation to boost the key
rate, these latter elements form the optimization variables of our problem.

Moreover, we find that e, only dependson U, = UO'OTUJ;E, and e_ only depends on U_ =

A'B’

U: };Uj %, Since the ny , can be defined independently of each other, the optimization of e,

can be decoupled from the optimization of e_, so we can overcome the nonlinearity
introduced by h,(-).

Taking stock, we have two independent objective functions e, which are linear with
respect to the Gramian matrix of the ancillae, which is a positive semidefinite matrix by
construction. Thus, these optimization problems take the form of semidefinite programs which
can be solved numerically on a standard laptop in a few seconds using available packages for
Python [11-12]. While previous literature on twisting operations had noted the opportunity for
optimizing U [7], no explicit procedure was constructed. Here, we have closed this gap,
increasing the practicality of utilizing a virtual twisting operation as a step in the security proof.

Example: random modulation error

As a study of fundamentally achievable key rates,
we consider the following two-parameter (4§, p)-model
for the initial states. We suppose Alice and Bob attempt
to prepare the states
{H), V), (|H) + V) /N2, (|H) — i|V))/V2}; however,
each state is subject to a modulation error which we
treat as a random variable. The resulting average 107
states can be treated as having a constant offset angle |
from the ideal Bloch vector, parametrized by 6, as well
as a depolarization noise parametrized by p, which
shortens the Bloch vector and introduces incoherent
mixing to the states.
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In Fig. 2, we plot the asymptotic key rate found
using our technique as a function of distance for
various pairs (6,p). We assume a Bell state detection
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50%, a dark count probability of 10~ per pulse per p)
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Fig. 2 — Key rate calculations for state preparation

efficiency of 1. For comparison with the key rate with random polarization modulation error

produced with our optimization, we plot the key rate

calculated using a suboptimal purification, which was constructed by simply diagonalizing
Alice and Bob's signal states and having the ancillary systems index the eigenvalues in
decreasing order. We find that our technique provides a modest increase over the “naive”
purification one could have chosen, our technique's advantages being most significant as the
depolarizing noise gets stronger (making the initial states more mixed), and at longer
distances when the untrusted channel noises (loss and dark counts) accrue. Additionally, we
see a better key rate can be produced by physically reducing state preparation noise;
however, once one has improved the real states as best as possible, our technique provides
confidence that one has optimized over all possible ancillary states of the purification that are
consistent with the protocol statistics without worry that one has chosen a pessimistic virtual
picture.
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